

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4730

Mechanics 3

Specimen Paper

Additional materials: Answer booklet Graph paper List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use 9.8 m s⁻².
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 A particle is moving with simple harmonic motion in a straight line. The period is 0.2 s and the amplitude of the motion is 0.3 m. Find the maximum speed and the maximum acceleration of the particle. [6]

A sphere A of mass m, moving on a horizontal surface, collides with another sphere B of mass 2m, which is at rest on the surface. The spheres are smooth and uniform, and have equal radius. Immediately before the collision, A has velocity u at an angle θ° to the line of centres of the spheres (see diagram). Immediately after the collision, the spheres move in directions that are perpendicular to each other.

- (i) Find the coefficient of restitution between the spheres. [4]
- (ii) Given that the spheres have equal speeds after the collision, find θ . [3]
- 3 An aircraft of mass 80 000 kg travelling at 90 m s⁻¹ touches down on a straight horizontal runway. It is brought to rest by braking and resistive forces which together are modelled by a horizontal force of magnitude $(27\ 000+50v^2)$ newtons, where v m s⁻¹ is the speed of the aircraft. Find the distance travelled by the aircraft between touching down and coming to rest. [8]

4 For a bungee jump, a girl is joined to a fixed point *O* of a bridge by an elastic rope of natural length 25 m and modulus of elasticity 1320 N. The girl starts from rest at *O* and falls vertically. The lowest point reached by the girl is 60 m vertically below *O*. The girl is modelled as a particle, the rope is assumed to be light, and air resistance is neglected.

(i)	Find the greatest tension in the rope during the girl's jump.	[2]
(ii)	Use energy considerations to find	

- (a) the mass of the girl, [4]
- (b) the speed of the girl when she has fallen half way to the lowest point. [3]

A particle *P* of mass 0.3 kg is moving in a vertical circle. It is attached to the fixed point *O* at the centre of the circle by a light inextensible string of length 1.5 m. When the string makes an angle of 40° with the downward vertical, the speed of *P* is 6.5 m s⁻¹ (see diagram). Air resistance may be neglected.

(i) Find the radial and transverse components of the acceleration of *P* at this instant. [2]

In the subsequent motion, with the string still taut and making an angle θ° with the downward vertical, the speed of *P* is $v \text{ m s}^{-1}$

- (ii) Use conservation of energy to show that $v^2 \approx 19.7 + 29.4 \cos \theta^\circ$. [4]
- (iii) Find the tension in the string in terms of θ . [4]
- (iv) Find the value of v at the instant when the string becomes slack. [3]

6

5

A step-ladder is modelled as two uniform rods *AB* and *AC*, freely jointed at *A*. The rods are in equilibrium in a vertical plane with *B* and *C* in contact with a rough horizontal surface. The rods have equal lengths; *AB* has weight 150 N and *AC* has weight 270 N. The point *A* is 2.5 m vertically above the surface, and BC = 1.6 m (see diagram).

- (i) Find the horizontal and vertical components of the force acting on *AC* at *A*. [8]
- (ii) The coefficient of friction has the same value μ at *B* and at *C*, and the step-ladder is on the point of slipping. Giving a reason, state whether the equilibrium is limiting at *B* or at *C*, and find μ . [6]

Two points A and B lie on a vertical line with A at a distance 2.6 m above B. A particle P of mass 10 kg is joined to A by an elastic string and to B by another elastic string (see diagram). Each string has natural length 0.8 m and modulus of elasticity 196 N. The strings are light and air resistance may be neglected.

(i) Verify that *P* is in equilibrium when *P* is vertically below *A* and the length of the string *PA* is 1.5 m.

[4]

[3]

The particle is set in motion along the line AB with both strings remaining taut. The displacement of P below the equilibrium position is denoted by x metres.

- (ii) Show that the tension in the string *PA* is 245(0.7+x) newtons, and the tension in the string *PB* is 245(0.3-x) newtons. [3]
- (iii) Show that the motion of *P* is simple harmonic.
- (iv) Given that the amplitude of the motion is 0.25 m, find the proportion of time for which *P* is above the mid-point of *AB*.

1	$0.2 = \frac{2\pi}{\omega} \Rightarrow \omega = 10\pi$	M1	For relevant use of $\frac{2\pi}{\omega}$
	-	A1	For correct value 10π
	Hence maximum speed is $0.3 \times 10\pi = 3\pi \approx 9.42 \text{ m s}^{-1}$	M1	For relevant use of $v = a\omega$
		A1√	For correct value 3π or 9.42
	Maximum acc is $0.3 \times (10\pi)^2 = 30\pi^2 \approx 296 \text{ m s}^{-2}$	M1	For relevant use of $a\omega^2$
		A1√ <u>6</u>	For correct value 30π or 296
		6	
3	(i) A and B move off \perp and \parallel resp. to line of centres	M1	For correct directions of motion after impact
	$2mv_B = mu\cos\theta$	A1	For correct momentum equation
	$v_B = eu\cos\theta$	A1	For correct restitution equation
	Hence $e = 0.5$	A1 4	For correct answer 0.5
	(ii) $v_A = u \sin \theta$	B1	For correct equation
	Hence $v_A = v_B \Longrightarrow u \sin \theta = 0.5u \cos \theta$	M1	For forming the relevant equation for θ
	So $\theta = \tan^{-1} 0.5 \approx 26.6^{\circ}$	A1 3	For correct value 26.6
		7	
3	$80\ 000v\frac{\mathrm{d}v}{\mathrm{d}x} = -(27\ 000 + 50v^2)$	M1	For using Newton II to form a DE
		A1	For correct equation including $v \frac{dv}{dx}$
	Hence $x = -\int \frac{1600v}{540 + v^2} dv$	M1	For separation of variables
	$= -800\ln(540 + v^2) + k$	M1	For logarithmic form of integral
		A1√	For correct integration of (their) $\frac{av}{b+cv^2}$
	$v = 90$ when $x = 0 \Longrightarrow k = 800 \ln 8640$	M1	For use of initial condition to find k
	Hence when $v = 0$, $x = 800 \ln 16$	M1	For evaluation of required distance
			(The previous two M marks can equivalently
	So distance is 2220 m approximately	A1 8	For correct value 2220
		8	
4	(i) Greatest tension = $\frac{1320 \times 35}{25}$ = 1848 N	M1	For use of $\frac{\lambda x}{l}$ at lowest point
	25	A1 2	For correct answer 1848
	(ii) (a) $mg \times 60 = \frac{1320}{(60-25)^2}$	M1	For use of correct EPE formula $\frac{\lambda x^2}{\lambda}$
1	2×25		2 <i>l</i> For correct unsimplified expression for EDE
	Hence the girl's mass is 55 kg	M1	For use of equation involving EPE and GPE
	6	A1 4	For correct answer 55
	(b) $55g \times 30 = \frac{1}{2} \times 55v^2 + \frac{1320}{2 \times 25} \times (30 - 25)^2$	M1	For energy equation with KE, GPE and EPE
1	-	A1√	For equation with all terms correct
	So $v^2 = 564$, hence speed is 23.7 m s ⁻¹	A1 3	For correct answer 24.3
		9	
1			

5	(i)	Radial acc is $\frac{6.5^2}{1.5} = 28.2 \text{ m s}^{-2}$	B1		For correct value 28.2
		Transverse acc is $g \sin 40^\circ = 6.30 \text{ m s}^{-2}$	B1	2	For correct value 6.30
	(ii)	$\frac{1}{2} \times 0.3 \times (6.5^2 - v^2) = 0.3 \times 9.8 \times 1.5 (\cos 40^\circ - \cos \theta^\circ)$	M1 B1		For equating PE gain to KE loss, or equiv For correct expression for PE gain
		Hence $42.25 - v^2 = 29.4(\cos 40^\circ - \cos \theta^\circ)$	B1		For correct expression for KE loss
		i.e. $v^2 \approx 19.7 + 29.4 \cos \theta^\circ$	A1	4	For showing given answer correctly
	(iii)	$T - 0.3g\cos\theta^\circ = 0.3 \times \frac{v^2}{1.5}$	M1		For use of Newton II, including $\frac{mv^2}{r}$ term
		Hence $T = 2.94 \cos \theta^{\circ} + 0.2(19.7 + 29.4 \cos \theta^{\circ})$ = 3.95 + 8.82 \cos \theta^{\circ}	A1 M1 A1	4	For correct (unsimplified) equation For substitution, to obtain expression for <i>T</i> For correct answer
		$T = 0$ when $3.05 \pm 8.82 \cos \theta^{\circ} = 0$	M1		For equating T to zero to find $\cos \theta$
	(IV)	Hence $v^2 = 19.7 + 29.4 \times \left(-\frac{3.95}{8.82}\right) \Rightarrow v \approx 2.56$	M1 M1		For using this $\cos\theta$ to find v
		(0.02)	A1	3	For correct answer 2.56
				13	
6	(i)	Mom @ <i>B</i> for <i>BAC</i> : $V_C \times 1.6 = 150 \times 0.4 + 270 \times 1.2$	M1		For suitable moments equation for BAC
		Hence $V_C = 240$	A1		For correct value for V_C (or equivalent)
		Mom @ C for AC: $V_A \times 0.8 + H_A \times 2.5 = 270 \times 0.4$	M1		For a moments equation for one rod with all
			A 1		required forces included
		Res \uparrow for AC: $V_A + V_C = 270$	M1		For another equation leading to V_{A}
		Hence $V_A = 270 - 240 = 30$ N (upwards)	A1		For correct magnitude and direction
		and $2.5H_A = 108 - 0.8 \times 30 \Rightarrow H_A = 33.6$ N (right)	M1		For substituting back to find H_A
			A1	8	For correct magnitude and direction
	(ii)	$V_B = 270 + 150 - V_C = 180$	M1		For finding all of V_B , H_B and H_C
		2	A1√		For correct V_B
		$H_B = H_C = H_A = 33.6$	A1√		For both H_B and H_C correct
		$\frac{H_B}{V_B} = \frac{33.6}{180} = 0.187, \ \frac{H_C}{V_C} = \frac{33.6}{240} = 0.14$	M1		For considering ratios at <i>B</i> and <i>C</i> , or equiv
		Hence friction is limiting at <i>B</i> Value of μ is 0.187	A1√ A1√	6	For identifying point with larger ratio For identifying the larger ratio as μ
				14	

-			1		
7	(i)	$T_{AP} = \frac{196}{0.8} \times (1.5 - 0.8) = 171.5$	M1		For using Hook's law to find either tension
		$T_{BP} = \frac{196}{0.8} \times (2.6 - 1.5 - 0.8) = 73.5$	A1		For both tensions correct
		$T_{AP} - T_{BP} = 98 = 10g$, hence equilibrium	M1		For considering $T_{AP} = mg + T_{BP}$, or equiv
			A1	4	For showing given result correctly
	(ii)	Extension of <i>PA</i> is $1.5 + x - 0.8 = 0.7 + x$	M1		For finding either extension in terms of <i>x</i>
		Hence $T_{AP} = \frac{196}{0.8}(0.7 + x) = 245(0.7 + x)$	A1		For showing one given answer correctly
		and $T_{BP} = \frac{196}{0.8}(1.1 - x - 0.8) = 245(0.3 - x)$	A1	3	For showing the other given answer correctly
	(iii)	$245(0.3 - x) + 10g - 245(07 + x) = 10\ddot{x}$	M1		For use of Newton II, at a general position
		Hence $\ddot{x} = -49x$, so the motion is SHM	A1 A1	3	For a correct equation For showing the given result correctly
		$0.2 = 0.25 \cos(7t)$	M1		For use of ± 0.2 in SHM equation involving t
	()		A1		For a correct equation for a relevant time
		Hence half of time above mid-pt is $t = 0.0919$	A1		For correct value for a relevant time
		Proportion is $\frac{t}{\pi/\omega} = 0.205$	M1		For relating t to period of oscillation
			A1	5	For correct proportion 0.205
				15	